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Abstract

Motivated by population-based geocoded data for Iowa stillbirths and live births delivered during 

2005–2011, we sought to identify spatio-temporal variation of stillbirth risk. Our high-quality data 

consisting of point locations of these delivery events allows use of a Bayesian Poisson point 

process approach to evaluate the spatial pattern of events. With this large epidemiologic dataset, 

we implemented the integrated nested Laplace approximation (INLA) to fit the conditional 

formulation of the point process via a Bayesian hierarchical model and empirically showed that 

INLA, compared to Markov chain Monte Carlo (MCMC) sampling, is an attractive approach. 

Furthermore, we modeled the temporal variability in stillbirth to better understand how stillbirths 

are geographically linked over the seven-year study period and demonstrate the similarity between 

the conditional formulation of the spatio-temporal model and a log Gaussian Cox process 

governed by discrete space-time random fields. After controlling for important features of the data, 

the Bayesian temporal relative risk maps identified areas of increasing and decreasing stillbirth 

risk over the birth period, which may warrant further public health investigation in the regions 

identified.
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1. Introduction

In Iowa, a stillbirth is defined as a fetal death with a gestational weight ≥ 350 grams or a 

gestation age of ≥ 20 weeks. The estimated prevalence for stillbirth in Iowa is about one in 

180 pregnancies compared to the U.S. estimate of one in 160 pregnancies (NICHD, 2017). 

We seek to learn more about where and when stillbirths are occurring by examining both the 

spatial and temporal patterns in stillbirths. The location of a stillbirth can be represented by 

the maternal residence at the time of delivery. The Iowa Registry for Congenital and 

Inherited Disorders (IRCID) has been actively monitoring stillbirth deliveries statewide 
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since 2005 (Romitti, 2015). For the birth period 2005–2011, the maternal residence at 

delivery for each stillbirth and live birth delivered to an Iowa resident was geocoded and the 

corresponding date of delivery recorded. The combined data for individual stillbirth events 

across a specified study period can form a point map of events within a spatial and temporal 

region. With our rich source of geocoded data, we aim to model the spatial and temporal 

patterns in stillbirth to learn more about how the spatial and temporal patterns have changed 

and how risk factors might be related to these changes.

During the seven-year study period, the ratio of the number of stillbirth to live birth events 

was 0.0044, or 0.44%; pregnancies with multiple fetuses were excluded. Because little is 

known about the underlying mechanism driving the spatial distribution of stillbirth events 

and with the relatively precise geocoded data available, a point process modeling approach 

was initially applied to these population-based surveillance data to quantify excess stillbirth 

risk (Zahrieh et al., 2018). The point process method allowed for analysis of multiple births 

by the same mother in independent pregnancies via a maternal contextual effect; this effect 

was a random factorial effect whereby stillbirth events experienced by the same mother from 

independent pregnancies were grouped so that the events within a group shared the same 

random effect. The methodologic approach adopted for our previous analysis identified and 

quantified several geographic regions of excess stillbirth risk beyond the underlying at-risk 

population (i.e. maternal residence at delivery of each live birth). Because our starting point 

focused on modeling the spatial distribution of stillbirth events, we did not take into account 

the timing of the events. Furthermore, a limitation of the initial methodologic approach was 

that it could not incorporate covariate information attached to the live births. In the current 

data analysis, we apply an appealing approach that can analytically address both of these 

insufficiencies.

To our knowledge, risk factor studies for stillbirth have predominantly been from 

population-based case-control studies (Flenady et al., 2011, provide a systematic review), 

with a few studies incorporating minimal geospatial information into data analyses (for 

example, Hall et al., 2014 and DeFranco et al., 2015). Logistic regression was the 

corresponding analytic method used to estimate associations in these studies; that is, the 

outcome events (stillbirth versus live birth) at observed spatial locations were modeled as 

conditionally independent binomial outcomes, but the spatial and temporal variation 

inherent in the locations and timing of the events within the study-specific and temporal 

region were ignored. Statistical methods that take the spatial arrangement of maternal 

residence and timing of the deliveries into account can potentially provide additional 

insights into antecedents that contribute to stillbirth occurrence.

In this paper, we use a conditional formulation of the point process via a Bayesian 

hierarchical model to view the joint realization of stillbirths and live births and, conditional 

on this realization, examine the probability that the binary label on a point is either a 

stillbirth or live birth. This spatial dependence addresses the labeling (delivery event), rather 

than the event locations themselves and simplifies analysis and interpretation compared with 

modeling maternal residence directly via a point process model. Importantly, with the 

conditional formulation of the point process we can now incorporate covariate information 

attached to both stillbirth and live birth. Our approach extends the conditional formulation of 
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a Bayesian point process model to include both spatial and temporal effects and to study 

empirically the recovery of spatial and temporal model components in this framework. We 

note that adding time (i.e. delivery date) to the investigation may be critical with respect to 

adequate understanding of how maternal residences are geographically linked. Furthermore, 

for most epidemiologic applications, the relations of individual level outcomes to individual 

level predictors are examined, and a compelling argument can be made to consider spatial 

and temporal effects as contextual effects (Lawson, 2012). The analysis of our stillbirth 

surveillance data falls within this framework. However, to determine the value of adding a 

temporal component to our model, we fit both spatial and spatio-temporal models to our data 

and applied a Bayesian model selection criterion to determine the better fitting model. In any 

event, we aim to apply the conditional formulation to the stillbirth and live birth data to 

investigate possible risk factors associated with the probability of a stillbirth event in the 

presence of spatial and spatio-temporal variation. Additionally, after accounting for selected 

risk factors, as well as a maternal contextual effect, we aim to identify possible geographic 

regions of high intensity within the spatial and temporal region warranting further 

investigation.

In developing our analytic approach, we acknowledge that a Markov Chain Monte Carlo 

(MCMC) approach conventionally is used to estimate posterior quantities for Bayesian 

models. Approximation to posterior distributions is also available through other techniques; 

therefore, we chose to use integrated nested Laplace approximation (INLA) in the R INLA 

package (H. Rue and Chopin (2009), Lindgren et al. (2011), Martins et al. (2013), Simpson 

et al. (2012a), Simpson et al. (2012b)). We chose to apply INLA, because this approach does 

not require posterior sampling methods, provides estimates quickly, and is amenable to large 

data sets. The INLA approximation to the posterior distributions ideally should be similar to 

the estimated posterior distributions obtained via MCMC sampling. To support the 

application of INLA in our work, we compare how similar the two approaches are by using 

the conditional formulation of the point process when the stillbirth event locations arise from 

a log Gaussian Cox process (LGCP). Conditional on the intensity of the process, the 

stillbirth event locations are a realization of a Poisson process, and the live birth event 

locations are an independent realization of a Poisson point process.

Detailed description of our proposed analytic approach begins in Section 2 with a 

description of our motivating data set and methodologic approach. Herein, we detail the 

Bayesian approach to estimation of the model. In Section 3, we describe our simulation 

technique and compare the two Bayesian estimation methods for the conditional formulation 

of the spatial and spatio-temporal models with respect to the recovery of true parameter 

values. In Section 4, we describe the application of the methodology to our stillbirth 

surveillance data, and in Section 5, we conclude our presentation by summarizing our 

findings, comparing our findings to those initially obtained from the point process approach, 

and discussing several remaining methodologic issues.
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2. Methods

2.1. Spatial Model

Stillbirths for the years 2005 through 2011 are in the form of a set of n event locations 

si =
Latitudei

Longitudei
: i = 1, …, n  within Iowa, a polygonal region denoted as W. This set of 

events represents the geocoded maternal residence at delivery for each event within W and 

are expected to exhibit substantial spatial variation in intensity. Additionally, some mothers 

experienced a stillbirth in more than one pregnancy within W during the study period. In the 

initial point process approach to modeling maternal residence, we adopted a multiplicative 

model (Gatrell et al., 1996) for the intensity function λ(s) of the form

λ(s) = ρλ0(s)λ1(s |θ) . (1)

The scaling parameter ρ represented the ratio of the number of stillbirth to live birth events; 

this quantity, assigned in advance as all occurrences of stillbirths and live births within W 
during the study period were recorded, was incorporated in the analysis. In model (1), λ0(s) 

represented the background intensity (i.e. the number of pregnancies at risk per unit area in 

the neighborhood of the location s) and λ1(s|θ), where θ is a vector of parameters, 

represented the possible increase in risk as a function of s.

In this paper, we assumed that the stillbirth event locations si : i = 1, …, n and the live birth 

event locations si : i = n + 1, …, N, where N = n + m, the total number of events, were 

independent realizations of Poisson processes, with their respective intensities governing the 

processes λ(s) and λ0(s). The superposition of the two point processes is also a Poisson 

point process (Diggle and Rowlingson, 1994). Following the work of Diggle and 

Rowlingson (1994), we defined a binary random variable Y to take the value 1 or 0 

according to whether the ith event in the superposition was an event of the first or the second 

element of the process. Conditioning on the joint realization of these processes, it is 

straightforward to algebraically show that the conditional probability of a stillbirth event at 

any location is Pr yi = 1 =
ρ ⋅ λ1 si |θ

1 + ρ ⋅ λ1 si |θ = pi. In deriving the conditional probability, the 

nuisance background intensity λ0(s) is conveniently eliminated from the model. This 

formulation leads to a spatial logistic regression model where a linear predictor, including a 

contextual effect that captures spatially correlated heterogeneity w(si), is assumed within 

λ1(si|θ). For example, a log linear formulation for λ1(si|θ) leads to a logit link to pi, i.e. 

pi =
exp ηi

1 + exp ηi
, where ηi = xT si β + w si + γji ∈ j and γji ∈ j, where j denotes the mother, 

represents a maternal contextual effect. Let β0 = log(ρ) denote the intercept and serves the 

role of the scientifically uninteresting constant background rate; that is, it is unnecessary to 

also include the constant ρ with the above parameterization. The resulting Bernoulli 

likelihood is then given by
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L(θ |s) = ∏
i = 1

N exp ηi
yi

1 + exp ηi
.

2.2. Spatio-Temporal Model

Because a stillbirth event was observed with a delivery date, it is possible to extend the 

conditional formulation by considering spatio-temporal effects. Specifically, we observed 

within study region W and a seven-year time period T, a set of n stillbirth events, with 

maternal residence at delivery given as {si}, i = 1, …, n, and also time labels {ti}, i = 1, …, 

n. Here, the random variables were the spatial location and the timing of delivery. Note that 

mothers may have experienced multiple independent events, and the spatial location may 

have changed from one event to the next. In this paper, we readily extended model (1) and 

considered a multiplicative model for the intensity function λ(s, t) that now represents the 

variation across space and time of the intensity of stillbirth events, of the form

λ(s, t) = ρλ0(s, t)λ1(s, t |θ) . (2)

Using a similar argument as with the spatial model, if the m live birth event locations are a 

realization of a spatio-temporal Poisson point process on W×T with λ0(s, t) and the stillbirth 

event locations are a realization of an independent spatio-temporal Poisson point process 

with λ(s, t), then the superposition of the two point processes is also a spatio-temporal 

Poisson point process provided that the two point processes are separable in space and time 

(Lawson, 2013). Conditioning on this joint realization, the binary labeling of these n + m 
events form a set of mutually independent Bernoulli random variables with spatio-temporal 

dependent probabilities Pr yi = 1 =
ρ ⋅ λ1 si, ti |θ

1 + ρ ⋅ λ1 si, ti |θ . The quantity ρ is a constant background 

rate now in space × time units. Our conditioning converts the statistical model to a linear 

binary regression model. This conversion avoids the problem of estimating λ0(s, t), which 

describes the spatio-temporal at-risk background population, and allows a straightforward 

extension of the multiplicative decomposition of model (1) to incorporate parameters 

relating to spatial, temporal, and spatio-temporal components considered germane to the 

application. Specifically, a log linear formulation for λ1(s, t|θ) leads to a logit link for pi, 

where now we can define ηi = xT si, ti β + w si + g ti + c si, ti + γji ∈ j and γji ∈ j, where j 

denotes the mother, represents a maternal contextual effect as before. Here, we consider 

discrete time labels corresponding to the number of days from January 1, 2005 and we 

assume a separable covariance structure in space and time, where w(si), g(ti), and c(si, ti) 
represent a spatially correlated term, temporally correlated term, and uncorrelated spatio-

temporal interaction term, respectively. This spatio-temporal interaction term allows for 

overdispersion.

2.3. Bayesian Estimation

A Bayesian hierarchical model was used for fitting models (1) and (2) to our stillbirth 

surveillance data. The focus in our analysis was to make inference about the coefficients β 
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allowing for the unobserved confounders w(si), g(ti), c(si, ti), and γji ∈ j, as well as obtaining 

a quantitative description of variation in the local intensity of stillbirth events within the 

spatial and temporal region. INLA (version 0.0–1468872408) was used to carry out the 

fitting of the conditional formulation of the spatial and spatio-temporal models to our 

stillbirth surveillance data and to obtain posterior quantities of the parameters 

θ = β, σw2 , ϕ, σg2, σc2, σγ2 . The parameters σw2 , σc2, and σγ2 are the respective variances 

associated with the spatially correlated heterogeneity term w(s), the uncorrelated space-time 

component c(s, t), and the maternal contextual effect γ, respectively. With regard to the 

temporal dependence, in this descriptive analysis a first-order autoregressive time 

component was assumed because it provided a parsimonious and intuitively appealing 

mechanism for describing temporal dependence; therefore, the parameters ϕ and σg2

corresponded to the time dependent parameter and the variance associated with the white 

noise, respectively. The deviance information criterion (DIC) - appropriate for model 

comparison in complex hierarchical models, such as these spatial and spatio-temporal 

models applied to the stillbirth data - was used to assess model adequacy and to compare the 

models. When comparing models using the DIC measure, Spiegelhalter et al. (2002) 

considered a difference in DIC of 2–3 and greater as meaningful; in our application, a 

difference in DIC greater than 3 was used to ascertain if the DIC was exhibiting a 

preference.

2.4. Prior Distributions

We adopted an intrinsic conditional autoregressive (CAR) prior distribution for the spatially 

correlated heterogeneity w(s) (Besag and Mollie, 1991) given as

wi si |wj sj , j ≠ i, nδi, σw2 N ∑
j ∈ δi

wj sj
nδi

,
σw2
nδi

,

where nδi was the total number of first-order neighbors in the jth area (i.e. the regions which 

share common geographical boundaries with the ith region) and δi was the first-order 

neighborhood of the ith region. Following Lawson (2012), the neighborhood relation 

assumed between event locations was based on a Dirichlet tessellation for a point process 

where the tiling of the locations leads to sets of natural neighbors defined by the adjoining 

edges of the tile. In other words, two locations were defined as neighbors if they shared a 

common border when the Dirichlet tessellation was used. Rather than apply some arbitrary 

means for defining neighboring points (e.g. a distance threshold), the Dirichlet tessellation 

was appealing because it has the remarkable mathematical property that all locations within 

a tile are closer to the tile point than to any other point (Rogers, 1964). And although a fully 

specified multivariate normal prior distribution could have been considered for the correlated 

component w(s), an intrinsic Gaussian prior distribution was adopted because it provided an 

attractive means for handling potentially complicated joint spatial dependencies, which were 

modeled simply through a collection of conditional dependencies, and was computationally 

advantageous. The prior distribution for each β was set to a normal distribution with mean 0 

and variance 1000. The maternal contextual effects γ were specified as spatially 
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uncorrelated effects so that γji ∈ j N 0, σγ2 , where i denotes the event and j denotes the 

mother. A first-order autoregressive model was assumed for the temporally correlated effect 

g(t) component, i.e. g(t + 1) = ϕ · g(t) + η(t), where η(t) are independent and identically 

distributed N 0, σg2 . The uncorrelated space-time component c(s, t), which is a residual 

effect, was given a N 0, σc2  prior distribution.

With INLA, modestly informed priors on the hyperparameters for random effects were 

shown to be needed in a suite of simulation studies comparing INLA with MCMC sampling 

results using OpenBUGS in Bayesian disease mapping (Carroll et al., 2015). Therefore, a 

modestly vague gamma prior (1, 1) was placed on the inverse of the variance components 

σw2 , σγ2, and σc2. Similarly, modestly vague priors were defined for the temporal component. 

Specificially, a modestly vague loggamma prior (1, 0.30) was placed on the natural 

logarithm of the marginal precision parameter 1
σm2

, where σm2 = 1
σg2 ⋅ 1 − ϕ2 ; additionally, a 

modestly vague normal prior N(0, 0.35) was assumed for the log 1 + ϕ
1 − ϕ , corresponding to a 

transformation for the time dependent parameter ϕ. Choosing more informative priors for 

these hyperparameters than the modestly vague priors detailed here did not significantly 

impact any of the results; however, and as was reported by Carroll et al. (2015), applying 

increasingly more vague priors drastically impacted the results with INLA.

3. Simulation Studies

To support the use of INLA, as opposed to MCMC sampling, as a reliable algorithm to 

estimate posterior quantities for the spatial and spatio-temporal models we are proposing, 

simulation studies, defined by three general parameterizations of the intensity function λ(s), 

were conducted. The goal of the simulation studies was not to validate the nuanced 

parameterization for the intensity function λ(s) applied to and estimated from our stillbirth 

data. Rather, our goal for carrying out these simulation studies was to compare the two 

Bayesian estimation methods INLA and MCMC sampling for the spatial and spatio-

temporal models in a slightly more general setting, albeit while maintaining some similarity 

with the parameterization for λ(s) applied to our stillbirth data. Achieving similar results 

between the two Bayesian estimation methods in such a setting would provide the desired 

support for the use of INLA in our data application.

The m control points were simulated first, assuming complete spatial randomness. Next, we 

separately constructed a point pattern of n case events, which proceeded in two steps, 

beginning with generating w(s) with zero mean from a conditional specification of a 

Gaussian Markov random field (GMRF) and then, generating locations given w(s) along 

with non-stationary mean μ(s). This construction is a LGCP. Each realized point pattern was 

simulated from a LGCP. Conditional on λ(s), we have a nonhomogeneous Poisson point 

process (NHPP). Following Besag and Mollie (1991), the conditional specification of the 

GMRF was given as
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wi si |wj sj , j ≠ i, nδi, σw2 N α ∑
j ∈ δi

wj sj
nδi

,
σw2
nδi

,

where α was a correlation parameter to ensure a proper stochastic mechanism and nδi was 

the total number of first-order neighbors in the jth area. The first-order neighborhood was 

found from a Dirichlet tessellation for a point process. We set α = 0.95, corresponding to 

strong spatial correlation.

The intensity function λ(s) was considered to reflect etiologic heterogeneity in occurrence 

of stillbirth, e.g. due to heterogeneous risk of experiencing a stillbirth based on some 

unobserved risk factors. Conceivably, this heterogeneity could be considered a random 

quantity that changes; therefore, one reason for simulating a point pattern in this doubly 

stochastic fashion was to assess the effect of the additional randomness induced by the 

inclusion of w(s) on our model that was parameterized to approximate the latent GMRF. 

This was accomplished by evaluating the reasonableness of the intrinsic CAR prior 

specification, defined earlier, as an approximation to the latent GMRF, as measured by σw2 . 

An intrinsic CAR prior was used because the expected posterior estimate of the correlation 

parameter α from a proper weighted CAR prior was consistently approaching one. 

Following Banerjee et al. (2015), within a Bayesian framework, a prior on α that encourages 

a consequential amount of spatial correlation would place most of its mass near one anyway. 

In any event, we also wanted to assess the recovery of the parameter β1, i.e. the coefficient 

ascribed to a spatially-referenced covariate driving the point pattern in the spatial model (1) 

as well as the recovery of all model parameters in the spatio-temporal model (2), separable 

in space and time.

In our simulation studies, we used the bounded state of Iowa for region W and T = [1, 60], 

treated as an indexing set {1, 2, …, 60}. With our real data reflecting the study time period 

of 2005 through 2011, 60 discrete time points corresponded to an evolving stillbirth event 

map every 6 weeks. Furthermore, we considered the setting where the ratio of case to 

control events was one (i.e. ρ = 1 or equivalently log(ρ) = β0 = 0), λ0(s) = λ0, a constant, 

and n = 1000; a realization of size n = 1000 corresponds roughly to the complete 

enumeration of 1,195 stillbirth events observed during the study period. Applying ρ = 0.004, 

as was observed in our stillbirth data, and preserving a point pattern of n = 1000 would 

require m = 250,000 simulated control points. With our goal to compare INLA and MCMC 

sampling in a slightly more general setting, we justified setting ρ = 1 so that both Bayesian 

methods of estimation could be implemented easily. For an event location s and time t, the 

log linear model parameterizations considered to address our goals were

I .  log λ1(s |θ) = β0 + w(s) .

II .  log λ1(s |θ) = β0 + β1x(s) + w(s) .
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III .  log λ1(s, t |θ) = β0 + β1x(s) + w(s) + g(t) .

Intensity parameterizations I and II, respectively, allow us to assess the reasonableness of an 

intrinsic CAR prior specificiation as an approximation to a latent GMRF and to assess the 

recovery of the true parameter β1 in the presence of unobserved spatial variation for both 

Bayesian estimation methods in the spatial-only setting. For both Bayesian estimation 

methods, to evaluate the recovery of all true parameters used in generating the spatio-

temporal point process, separable in space and time, we used intensity parameterization III.

The standardized spatially-referenced covariate x(s) represented a simulated point-level 

covariate, which was not time-varying, but exhibited strong spatial correlation as might be 

found in epidemiologic applications; a Gaussian random variable with mean zero and 

powered exponential covariance structure was assumed. The covariate was generated using 

the RandomFields package in R (Schlather et al., 2015) and then standardized. We specified 

the covariance structure by using the RMpoweredexp command where the variance was set 

to 1, the range to 1, the nugget to 0, and the power to 1.5. In intensity parameterization III, 

we assumed a discretized version of the random fields so that any realization of the field 

{(si, ti)} had a separable correlation structure. Within this assumption, the likelihood 

remained that of a conditionally modulated Poisson process. The temporal component g(t) 
was a first-order autoregressive model. Unlike the model applied to our stillbirth surveillance 

data, our carefully controlled simulated experiments obviated the need to include a residual 

effect corresponding to the uncorrelated space-time residual component c(s, t) in model (2). 

See Appendices A.1 and A.2, respectively, for the simulation algorithm used for the spatial 

and spatio-temporal models.

3.1. Simulation Results

In each simulated experiment, we generated 100 realizations. For each realization, posterior 

quantiles were estimated from the Bayesian spatial and spatio-temporal models using INLA 

(version 0.0–1468872408) and MCMC sampling. The total number of iterations used in 

MCMC sampling was 750,000 with the first 250,000 treated as burn-in. To decrease 

autocorrelation, samples were thinned, using only every 50th step in the sampler. The 

simulation studies were implemented in R using the INLA package and R2OpenBUGS. 

Tabular summaries were used to display the average measure of error (i.e. the bias) and the 

corresponding standard deviation.

3.1.1. Intensity Parameterization I: logλ1(s|θ) = β0 + w(s)—As part of our goal for 

conducting simulation studies, we assessed the reasonableness of an intrinsic CAR prior 

specification as an approximation to a latent GMRF assuming the conditional formulation of 

the spatial model. We considered modest (σw = 0.708), large (σw = 1.225), and very large 

(σw = 2.5) unobserved variation for the latent GMRF. Because we assumed the ratio of case 

to control events was one (i.e. ρ = 1), the corresponding true value of β0 (i.e. log(ρ)) used in 

simulating the point patterns was zero. For both Bayesian estimation methods, β0 was well 

estimated and the average measure of error associated with β0 was consistently negligible 

(data not shown). The top portion of Table 1 displays the bias of the estimates σw comparing 
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INLA with MCMC sampling. Both estimation methods underestimated the true value of σw 

used in simulating the point patterns. Compared to INLA, however, the average measure of 

error was consistently smaller with MCMC sampling. Although the average measure of error 

increased for both estimation methods in the presence of incrementally larger unobserved 

spatial variation, both estimation methods arguably performed reasonably well in the 

presence of modest unobserved spatial variation. With a point pattern of size n = 1000, the 

respective average runtimes for INLA and MCMC sampling were approximately 4 and 3290 

seconds.

3.1.2. Intensity Parameterization II: logλ1(s|θ) = β0 + β1x(s) + w(s)—As part of 

our goal for conducting simulation studies, we also assessed the recovery of the true 

parameter β1 in the presence of modest unobserved spatial variation. The average measure 

of error for three effect sizes are shown in the bottom portion of Table 1 assuming a point 

pattern of size n = 1000. The average measure of error was similar and arguably negligible 

for both INLA and MCMC estimation methods.

3.1.3. Intensity Parameterization III: logλ1(s, t|θ) = β0 + β1x(s) + w(s) + g(t)—
We assessed the recovery of all true parameters used in generating the point process, 

separable in space and time, using INLA and MCMC sampling to fit the spatio-temporal 

model. Table 2 shows the average measure of error for each of the model components when 

assuming the true value of the time dependent parameter ϕ for the first-order autoregressive 

distribution was either 0.5 or 0.9; note, ϕ = 1 corresponded to a random walk and ϕ = 0 

represented no time dependency. For ϕ ∈ {0.5,0.9}, on average, the bias was negligible and 

comparable between the two estimation methods for the parameter β1 and for the standard 

deviation σg associated with the white noise of the first-order autoregressive time series. On 

average, the time dependent parameter ϕ was somewhat underestimated, and perhaps slightly 

more so in the presence of stronger temporal dependency, for both estimation methods. 

Although the average measure of error associated with ϕ was not that different between the 

two estimation methods, MCMC sampling consistently outperformed INLA. For both 

estimation methods, the spatial variance component (σw) was underestimated by a similar 

magnitude as seen with Intensity Parameterization I. The average runtimes for INLA and 

MCMC sampling with a point pattern of size n = 1000 were approximately 10 and 7,901 

seconds, respectively.

3.2. Simulation Conclusions

In the conditional formulation of the spatial and spatio-temporal models, applicable to a 

more general setting than with the nuanced parameterization applied to our stillbirth data, 

INLA gave reasonable results compared to MCMC, particularly for the epidemiologically 

interesting parameter β1. Furthermore, results from the simulation study using INLA to 

estimate the spatio-temporal model suggested that the time dependent parameter ϕ was 

adequately recovered and not that different from MCMC sampling. If our primary interest 

was in estimating the unobserved spatial variation, then MCMC would be preferred; 

furthermore, the researcher could consider less vague priors on the precision 

hyperparameters with MCMC sampling. Nonetheless, σw was negatively biased for both 

methods which we believe was likely due to the inability of the conditional formulation of 
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the models to capture the additional randomness associated with the intensity surface. With 

the focus of our epidemiologic application being on the vector of β coefficients, adjusting 

for the spatially correlated heterogeneity effects w(s), and because MCMC sampling applied 

to our large stillbirth data set would be very slow based on our simulation studies, we 

proceeded with INLA in estimating the spatial and spatio-temporal models in the data 

application and not MCMC sampling.

4. Data Application

The IRCID began actively monitoring stillbirth deliveries statewide in 2005 (Romitti, 2015). 

For the years 2005–2011, the maternal residence at delivery (event location) of each 

stillbirth and live birth delivered to an Iowa resident was geocoded. There were 1,195 

stillbirth deliveries from independent pregnancies enumerated by the IRCID and 271,791 

live births recorded during the seven-year study period; pregnancies with multiple fetuses 

were excluded, because of differing risks for birth weight, gestational age, and fetal growth 

among multiple compared to singleton pregnancies. There were 1,167 mothers who 

experienced a stillbirth in one pregnancy, and 14 mothers who experienced a stillbirth in two 

independent pregnancies.

The event locations of all live births in Iowa, during the study period from families who 

experienced at least one stillbirth during the study period, were included in the set of control 

event locations. This corresponded to 1,150 control event locations for which all had 

covariate information. A complete set of covariate information was available for 270,323 

control event locations from families who did not experience a stillbirth during the study 

period. These 270,323 control event locations corresponded to 195,502 unique families. 

Because of the considerable memory requirements needed to process the neighborhood 

relation between event locations, defined based on the Dirichlet tesselation, and to fit the 

spatial-temporal models, 50,000 (25%) control families were randomly selected from the 

195,502 unique families. Our analysis included 71,316 events (1,195 stillbirth events, 

including 1,150 sibling controls; 68,971 remaining controls), which corresponded to 51,181 

families. We repeated our analyses on three randomly sampled data sets of similar size, and 

the results remained robust for each data set (data not shown). The spatial distribution of 

stillbirth event locations did not differ appreciably from the distribution of the event 

locations for the at-risk population, namely, maternal residence at delivery for each live birth 

(Zahrieh et al., 2018).

Our surveillance data were observed with a time label, defined as the number of days from 

January 1, 2005, and a spatial location, namely, the maternal residence at the time of a 

stillbirth or live birth event. Figure 1 displays the successive number of stillbirths to the 

number of live births per month during January 1, 2005 through December 31, 2011. 

Although there was considerable variability, following a slight increase in the ratio through 

2008, the ratio appears to modestly decrease.

We fit several Bayesian spatial and spatio-temporal logistic regression models for the binary 

outcome (stillbirth, live birth), where the probability was a function of space-only or space 

and time (Table 3). The DIC expressed a strong preference for the spatio-temporal model 
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that included the time varying covariate maternal age at the time of a delivery, maternal race/

ethnicity, and two zip code tabulation area (ZCTA) covariates: percentage of childbearing 

women with less than a bachelor’s degree and median income, both obtained from the 2007–

2011 American Community Survey data. Notably, we observed a strong association between 

maternal race/ethnicity and urbanized ZCTAs of Iowa, as defined by the 2010 U.S. census 

(67% of mothers categorized as other race/ethnicity were estimated to live in urban areas 

compared with 45% of non-Hispanic whites) and based on the DIC, we selected the 

parsimonious model excluding the urban versus rural indicator. Table 4 displays the 

estimated posterior quantities obtained from fitting our selected Bayesian spatio-temporal 

logistic model. With the exception of median income, the expected posterior estimates and 

the corresponding 95% credible intervals suggested that the parameter estimates were 

important; in particular, the 95% credible interval for the time dependent parameter ϕ 
excluded zero (mean: 0.8517; 95% credible interval: 0.4604, 0.9938). The estimated runtime 

to fit the selected spatio-temporal logistic model with INLA was 143,282 seconds.

From our final model that included the point-level covariates maternal age at delivery and 

maternal race/ethnicity, as well as the regional-level (ZCTA) covariates percent of 

childbearing women with less than a bachelor’s degree and median income, and controlled 

for the live birth events, the posterior expected estimates for the spatial correlation 

component, temporal correlation component, the spatio-temporal residual component, and 

the time series plot indexed by the number of days from January 1, 2005 are displayed in 

Figure 2 for the 1,195 stillbirth events. The Bayesian stillbirth event map for the spatial 

correlation component (Figure 2a) suggests that there are peaks in the spatial component in 

the south-central and south-east areas of Iowa, as well as in a south-easterly direction from 

Des Moines; we single out this latter area because this observation was evidenced when 

fitting the point process model. The Bayesian stillbirth event map for the temporal 

correlation component (Figure 2b) indicates temporal variations with marked changes in 

several pockets across the state. Based on the Bayesian map of the space-time residual 

component (Figure 2c), there is considerable extra variation remaining not accounted for by 

the separable space and time components. Lastly, the time series plot of the temporal 

correlation component (Figure 2d) does not indicate any apparent cyclical behavior over the 

study period and mirrors the observed trend depicted in Figure 1.

Identifying where stillbirth prevalence exceeds a certain relative risk threshold over time can 

be more useful than reporting posterior quantities from fitting the model. Therefore, to 

assess localized spatio-temporal behavior of the model and the assessment of unusual 

aggregation of stillbirth events over time, heat-contour maps of relative risk within the time 

intervals 2005–2006, 2007–2008, and 2009–2011 were investigated. For the 1,195 stillbirth 

events, Figure 3 displays the marginal posterior expectation results for the spatio-temporal 

model that included the covariates and controlled for the live births, where the spatio-

temporal relative risk was defined as 

λ1 si, ti |θ = exp xT si, ti β + w si + g ti + c si, ti + γji ∈ j . In other words, the posterior 

estimates of spatio-temporal relative risk included all model components of risk excluding 

the intercept. The estimated mean of the posterior distribution of the model parameters was 

used in obtaining localized relative risk at the three temporal increments over the study 
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period. The cities with a population >50,000 residents are superimposed and presented as 

solid green diamonds. Edge effects were present, so care needs to be exercised in 

interpreting the heat-contour maps along the boundary of the spatial region. Nonetheless, 

apparent changes were seen with this spatio-temporal presentation of the Bayesian relative 

risk maps. Notably, the Bayesian relative risk maps indicated increasing risk in the west 

south-west areas of Iowa and decreasing risk in the north and south-easterly direction from 

the central counties of Iowa, over the birth period.

5. Discussion

In our epidemiologic setting where it can reasonably be assumed that the stillbirth and live 

birth event locations arise from independent Poisson point processes, the conditional 

formulation of the point process model still allowed us to capture the salient features of our 

stillbirth surveillance data while quantifying localized geographic regions of high relative 

risk. Moreover, the conditional approach greatly simplified the analysis and interpretation 

compared with modeling the maternal residence via a point process model. As opposed to 

the point process modeling approach applied initially, the conditional formulation was easily 

extended to include temporal effects and allowed for the inclusion of covariate information 

attached to both stillbirth and live birth; therefore, we were now able to quantify geographic 

regions of excess stillbirth risk after adjusting for our set of covariates, and both spatial and 

temporal effects. Although we were no longer modeling the spatial distribution of event 

locations, we can still, to some extent, assume that the data arose from a LGCP where the 

intensity of the process is governed by a GMRF. That is, conditional on the intensity, the 

data are a Poisson point process and then conditional on the locations we showed that we 

can reasonably account for unobserved spatially correlated heterogeneity assuming an 

intrinsic CAR specification within a relatively simple Bayesian spatial logistic regression 

model estimated with INLA.

In our data application, we added the time of a stillbirth event to the event location to 

facilitate our understanding of how stillbirth events were geographically linked within Iowa 

during the study period. Although we did not model the spatio-temporal distributions of the 

event locations directly, we can pragmatically assume that the data arose from a spatio-

temporal LGCP where the intensity of the process was governed by discretized space-time 

random fields. Our general simulation study demonstrated the similarity between the 

conditional formulation of the spatio-temporal model and a spatio-temporal LGCP. In 

particular, in the presence of modest spatial variation associated with the GMRF, the 

conditional formulation of the spatio-temporal model estimated with INLA was sensitive to 

modest and strong temporal dependence assuming a first-order autoregressive model.

The argument for using the INLA R package to estimate the Bayesian spatial and spatio-

temporal models was twofold. First, INLA provided a faster and reasonably accurate 

alternative to MCMC sampling for posterior parameter estimation. Ideally, results using 

INLA should be close to the MCMC approach to estimation, which we observed in our 

simulation studies applicable to a more general setting for the recovery of the parameter β1, 

the time dependent parameter ϕ, and the standard deviation σg associated with the white 

noise, but less so for the recovery of the variance σw2  associated with the spatially correlated 
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heterogeneity effects w(s). Despite parameterizing the intensity function to represent a form 

of a LGCP, the underestimation of σw2  was expected because the heterogeneity due to 

variability in the intensity surface is not captured in the likelihood function for the 

conditional formulation of the point process. INLA was particularly useful for our 

application where conventional MCMC sampler programs would be extremely slow. 

Second, it offered a flexible model specification to capture the salient features of our 

stillbirth surveillance data and was applicable to a log-linear Gaussian model. The main 

disadvantage of using INLA was the need to use a less vague prior on the precision 

hyperparameters. In the current application, the focus of the analysis was on the vector of β 
coefficients, adjusting for the confounding variables w(s), γ, and g(t). If the goal, however, 

was to model and draw inference on the unobserved spatial variation, the data analyst would 

need to be prepared to carry out sensitivity analyses.

The parameterization of the modeled excess risk component in the multiplicative 

formulation of the intensity function flexibly permitted inclusion of model components that 

captured important and nuanced features of the application, such as a maternal contextual 

effect. Additionally, the spatio-temporal model allowed us to obtain a quantitative 

description of variation in local intensity of stillbirth events in space and time. Although our 

focus was on relative risk estimation rather than cluster detection, localized areas of excess 

aggregation of stillbirth events over time were quantified based on a host of important 

features captured by our model parameterization and identified for further investigation. 

There was some agreement as well as some differences between the results obtained from 

the conditional approach and the findings previously obtained from the point process 

approach. The mapped regions of high levels of spatially correlated heterogeneity were 

qualitatively similar to the mapped regions obtained from the point process model applied to 

these data, and, notably, neither map indicated a random scatter of areas of high levels. 

Although maternal age at the time of a stillbirth delivery was not shown to be associated 

with the spatial distribution of stillbirth after applying the point process model, it was 

predictive in the conditional approach that modeled the conditional probability of stillbirth; 

the latter finding was consistent with a recent systematic review and meta-analysis from 14 

case-control studies that showed advanced maternal age increases the odds of stillbirth (Lean 

et al., 2017). Also, after controlling for the at-risk live birth intensity in the point process 

model, maternal residence in urban locations was strongly associated with the spatial 

distribution of stillbirth; however, the presence of race/ethnicity in the conditional model 

obviated the need for the urban/rural factor.

There were several limitations of our methodologic approach. We adopted a CAR prior for 

the spatially correlated heterogeneity where the neighborhood relation between event 

locations was based on a Dirichlet tessellation for a point process. This defensible approach 

for defining neighbors resulted in a connected graph (or collection of nodes and contiguous 

edges) that required high memory requirements to process; coupled with the rather high 

memory requirements needed to fit the spatio-temporal model we, therefore, based our 

inference on a random sample of 50,000 control families or 25% of the 195,502 unique 

families. However, the analysis was repeated on 3 randomly sampled data sets of similar size 

and the conclusions were unchanged. As this was a descriptive analysis, edge effects were 
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ignored. Also, for environmental risk assessment where continuous risk fields may be 

affecting the at-risk population, a range of appropriate and suspected spatio-temporal 

covariates are needed to quantitatively describe excess risk. An autoregressive prior 

distribution was used, assuming a first-order autoregressive model. Although this choice for 

a prior distribution allowed for a linear (i.e. with respect to the previous value) non-

parametric temporal effect, alternative formulations could be considered for the temporal 

component. Lastly, further work is needed to validate the final model applied to our stillbirth 

data.

There were also some notable study design limitations. Although the maternal residence at 

delivery was used to represent exposure to environmental risk, albeit treated as a contextual 

effect in our model formulation, it ignored the possibility that exposure to environmental 

risks may occur elsewhere. Also, the residence at delivery may not represent the residence at 

conception or during early pregnancy. In addition, unavailable fetal and maternal risk factors 

not included in our model limits the interpretation of our results. Future follow-up of 

mothers within the spatial and temporal geographic regions of excess risk compared to non-

risk may provide insights into these unmeasured environmental and social factors. Lastly, a 

longer study time period is needed to better characterize spatio-temporal changes in relative 

risk.

Conclusions

Using a conditional approach to modeling the geocoded stillbirth and live birth data, we 

quantified and mapped the excess stillbirth risk in the presence of spatial and temporal 

heterogeneity and after adjusting for covariates attached to both stillbirth and live birth. Our 

model was fitted with INLA, as opposed to MCMC sampling, with reasonable accuracy, and 

INLA accommodated our large data set. Furthermore, our use of the conditional formulation 

was readily extended to include temporal effects. To our knowledge, our study is the first to 

conduct a formal spatio-temporal analysis of stillbirth surveillance data. Although the 

temporal correlation component indicated temporal variations with marked changes in 

several areas across the state, the residual space-time component indicated that there was 

extra variation remaining not captured by the separable space-time components and 

covariates available for analysis. Nonetheless, our Bayesian relative risk maps indicated 

increasing and decreasing risk over the birth period, which may warrant further public health 

investigation in the geographic regions identified.
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Appendix A.: Simulation Technique

A.1. Spatial Model

First, we simulated m control points assuming complete spatial randomness. The m 
geographic (longitude, latitude) pairs were generated uniformly in W using rejection 

sampling. Next, we independently generated a point pattern of n case events. Constructing a 

point pattern proceeded in two steps, beginning with generating w(s) with mean zero from a 

conditional specificiation of a Gaussian Markov random field (GMRF) with a first-order 

neighborhood structure based on a Dirichlet tessellation for a point process and then, 

generating locations given w(s) along with non-stationary mean μ(s). This construction is a 

log Gaussian Cox process. Conditional on λ(s), we have a nonhomogeneous Poisson point 

process (NHPP). For the given conditional specification of the GMRF and nonstationary 

mean μ(s), our algorithm to sample one realization of n case events, therefore, was as 

follows:

1. For large N, simulate s = {s1, s2, …, sN} assuming complete spatial random ness 

within W

2. Generate w(s) a GMRF with mean zero

3. Calculate λ(s) = exp(μ(s) + w(s))

4. Define λmax = MAX(λ(s))

5. Thin the simulated process as follows

a. Randomly draw a point s with replacement

b. Generate a random number u from the uniform distribution (0, 1)

c. If 
λsampled

λmax
> u, accept the point s

d. Repeat (a)-(c) until the desired number of points (n = 1000) are 

generated

The N geographic (longitude, latitude) pairs were generated uniformly in W using rejection 

sampling. Complete spatial randomness in step 1 of the algorithm was achieved by 

generating geographic pairs uniformly on the enclosing rectangle [−96.60641, −90.13772] × 

[40.37634, 43.51041]. The approximate area of the polygonal boundary W is 56,025.5 

square miles and the approximate area of the enclosing rectangle is 73,029.64 square miles.

The case event locations were a realization of a Poisson point process on W, with intensity 

λ(s) and the control event locations were a realization of an independent Poisson point 

process with constant intensity λ0(s) ≡ λ0. Conditional on the n + m = 2n locations si, which 

we call events, the labels of these events were a set of mutually independent Bernoulli 

random variables; that is, we associated with each event location a binary variable (yi) which 

labels the event either as a case (yi = 1) or a control (yi = 0). Conditioning on the joint 

realization of these point processes, the conditional probability of a case at any location is
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Pr yi = 1 =
λ si |θ

1 + λ si |θ .

A.2. Spatio-Temporal Model

We assumed a separable covariance function in space and time (i.e. an additive form in 

spatial and temporal effects) without a space-time residual. First, we simulated m control 

points assuming complete spatial randomness, and for each location, we uniformly 

simulated discrete time [1, 60]. Next, we independently generated a point pattern of n case 

events from a log Gaussian Cox process in space and time using a global majorizing 

function within a rejection algorithm. Conditional on λ(s, t), we had a spatio-temporal 

NHPP for the case event locations within the spatial and temporal region.

For the given conditional specification of the Gaussian Markov random field (GMRF) and 

nonstationary mean μ(s), as well as a first order autoregressive time series g(t), our 

algorithm to sample a realization of n case events was as follows:

1. For large N, simulate s = {s1, s2, …, sN} assuming complete spatial randomness 

within W

2. For each of the N locations, uniformly simulate discrete time [1, 60] with 

replacement

3. Generate a first order autoregressive time series g(t) for t ∈ [1, 60] and merge 

with the data set of size N by t

4. Generate w(s) a GMRF with mean zero

5. Calculate λ(s) = exp(μ(s) + w(s) + g(t))

6. Define λmax = MAX(λ(s))

7. Thin the simulated process as follows

a. Randomly draw a point s with replacement

b. Generate a random number u from the uniform distribution (0, 1)

c. If 
λsampled

λmax
> u, accept the point s

d. Repeat (a)-(c) until the desired number of points (n = 1000) are 

generated

The case event locations were a realization of a spatio-temporal Poisson point process on W 
× T, with intensity λ(s, t) and the control event locations were a realization of an 

independent spatio-temporal Poisson point process with constant intensity λ0(s, t) ≡ λ0. 

Conditional on the n + m = 2n locations (si, ti), which we call events, the labels of these 

events were a set of mutually independent Bernoulli random variables; that is, we associated 

with each event location a binary variable (yi) which labeled the event either as a case (yi = 
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1) or a control (yi = 0). Conditioning on the joint realization of these point processes, the 

conditional probability of a case at any event location was

Pr yi = 1 =
λ si, ti |θ

1 + λ si, ti |θ .
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Figure 1: 
Ratio of stillbirth deliveries to 1000 live births: Months since January 1, 2005 of successive 

stillbirth deliveries per 1000 live births between January 1, 2005 and December 31, 2011.
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Figure 2: 
Bayesian disease maps from the final model: For the 1,195 stillbirth deliveries, the posterior 

expected estimates from the Bayesian spatio-temporal logistic model fit to the stillbirth 

surveillance data: four displays correponding to the spatial component (a), a temporal 

correlation component (b), a space-time residual component (c), and a time component time 

series plot indexed by the number of days from January 1, 2005 (d). The red dotted lines in 

(d) indicate one-year intervals. Estimated posterior quantities were obtained from the 

integrated nested Laplace approximation.
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Figure 3: 
Bayesian disease maps of relative risk from the final model: Bayesian relative risk maps, 

presented as heat-contour plots, based on the estimated posterior expectations of all model 

components from the spatio-temporal Bayesian hierarchical model that controlled for the 

live births, mapped at the maternal residence for the 1,195 stillbirth deliveries. Estimated 

posterior quantities were obtained from the integrated nested Laplace approximation.
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Table 1:

Average estimated mean of the posterior distribution (standard deviation) and average measure of error 

associated with the conditional approach to estimation via INLA and MCMC for intensity parameterizations I 

and II based on 100 realizations of point patterns of size n = 1000.

Intensity Parameterization I: log λ1(s|θ) = β0 + w(s)

True Value (σw)

0.708 1.225 2.5 Runtime

INLA Mean (SD) 0.5495 (0.0541) 0.6620 (0.0827) 1.1702 (0.1612) 2.8 sec

Ave σw − σw −0.1585 −0.5630 −1.3300

MCMC Mean (SD) 0.6290 (0.0809) 0.7707 (0.1400) 1.708 (0.2948) 3290 sec

Ave σw − σw −0.0790 −0.4543 −0.7920

Intensity Parameterization II: log λ1(s|θ) = β0 + β1x(s) + w(s)

True Value (β1)

−0.50 −0.25 0.00

INLA Mean (SD) −0.4896 (0.0650) −0.2411 (0.0548) 0.0051 (0.0520)

Ave β1 − β1 0.0104 0.0089 0.0051

MCMC Mean (SD) −0.4908 (0.0614) −0.2352 (0.0622) −0.0048 (0.0566)

Ave β1 − β1 0.0092 0.0148 −0.0048

Note: INLA = integrated nested Laplace approximation; MCMC = Markov chain Monte Carlo; SD = standard deviation. Modest unobserved 

spatial variation (i.e. σw = 0.708 or σw2 = 0.5) was assumed for parameterization II. An intrinsic conditional autoregressive prior distribution was 

adopted for the spatially correlated heterogeneity w(s) and a modestly vague gamma prior (1, 1) was placed on the inverse of the variance 

component σw2 . The prior distribution for β1 was set to a normal distribution with mean 0 and variance 1000.
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Table 2:

Average measure of error (standard deviation) associated with the conditional approach to estimation via 

INLA and MCMC for intensity parameterization III.

Intensity Parameterization III: logλ1(s|θ) = β0 + β1x(s) + w(s) + g(t)

True Value Average Measure of Error (Standard Deviation)

ϕ β1 Ave β1 − β1 Ave σw − σw Ave ϕ − ϕ Ave σg − σg

INLA

σw = 0.708 σg = 0.35 0.50 −0.50 0.0094 (0.0644) −0.1796 (0.0433) −0.0548 (0.2421) −0.0002 (0.0505)

0.50 −0.25 0.0075 (0.0565) −0.1836 (0.0435) −0.0490 (0.2161) −0.0030 (0.0600)

0.50 0.00 −0.0053 (0.0549) −0.1904 (0.0362) −0.0607 (0.2395) −0.0010 (0.0596)

σw = 0.708 σg = 0.35 0.90 −0.50 0.0213 (0.0640) −0.1740 (0.0481) −0.0717 (0.1040) −0.0057 (0.0672)

0.90 −0.25 0.0054 (0.0576) −0.1902 (0.0436) −0.0683 (0.0916) −0.0095 (0.0646)

0.90 0.00 0.0046 (0.0591) −0.1823 (0.0444) −0.0810 (0.1036) −0.0118 (0.0692)

MCMC

σw = 0.708 σg = 0.35 0.50 −0.50 0.0107 (0.0696) −0.0975 (0.0740) −0.0098 (0.2428) −0.0122 (0.0655)

0.50 −0.25 −0.0013 (0.0614) −0.1095 (0.0675) −0.0284 (0.1845) −0.0031 (0.0676)

0.50 0.00 −0.0040 (0.0633) −0.1006 (0.0768) −0.0160 (0.1963) −0.0035 (0.0595)

σw = 0.708 σg = 0.35 0.90 −0.50 0.0071 (0.0659) −0.1068 (0.0625) −0.0532 (0.0934) 0.0009 (0.0667)

0.90 −0.25 0.0052 (0.0555) −0.0959 (0.0652) −0.0484 (0.0808) 0.0000 (0.0616)

0.90 0.00 0.0102 (0.0553) −0.1074 (0.0828) −0.0478 (0.0758) 0.0015 (0.0652)

Note: INLA = integrated nested Laplace approximation; MCMC = Markov chain Monte Carlo. Results are based on 100 realizations of point 
patterns of size n = 1000. Time t ∈ [1, 60], was treated as an indexing set {1, 2, …, 60}. An intrinsic conditional autoregressive prior distribution 
was adopted for the spatially correlated heterogeneity w(s) and a modestly vague gamma prior (1, 1) was placed on the inverse of the variance 

component σw2 . The prior distribution for β1 was set to a normal distribution with mean 0 and variance 1000. The standard deviation associated 

with the white noise of the first-order autoregressive time series was set to σg = 0.35, which corresponded to a marginal standard deviation of σm = 

0.4041 and σm = 0.8030 when ϕ equals 0.5 and 0.9, respectively. A modestly vague loggamma prior (1, 0.30) was placed on the natural logarithm 

of the marginal precision parameter 1/σm2 , where σm2 = 1/ σg2 ⋅ 1 − ϕ2  and a modestly vague normal prior N(0, 0.35) was assumed for the 

log [(1 + ϕ) /(1 – ϕ)], corresponding to a transformation for the time dependent parameter ϕ.
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Table 3:

Model preference using the deviance information criterion (DIC).

Model Covariates DIC Runtime

w(s) + γ None 12068.05 845 sec

xT (s)β + w(s) + γ Included 11991.31 722 sec

w(s) + g(t) + c(s,t) + γ None 11996.36 80958 sec

xT(s,t)β+ w(s) + g(t) + c(s,t) + γ Included + Urban vs. Rural Indicator 11926.05 136289 sec

xT(s,t)β+ w(s) + g(t) + c(s,t) + γ Included 11922.89 143282 sec

Note: The included vector of covariates xT comprised maternal age at delivery, an indicator for maternal race/ethnicity, and the ZCTA-level 
covariates percentage of childbearing women with less than a bachelor’s degree and median income; continuous covariates were centered and 
standardized. The percent of child-bearing women with less than a bachelor’s degree and median income were calculated for each ZCTA from the 
2007–2011 American Community Survey data. A ZCTA was designated as urban if it intersected with the urbanized areas of Iowa, as defined by 
the 2010 census (US Census Bureau) or as rural if it did not intersect with urbanized areas; urbanized areas are defined by the census as having a 
population of >50,000 residents with a density of at least 500 people per square mile. The model parameters w(s), γ, g(t), and c(s, t) represented 
spatially correlated heterogeneity, a maternal contextual effect, a temporally correlated term, and an uncorrelated spatio-temporal interaction term, 
respectively. 50,000 (25%) control families were randomly selected from the 195,502 unique families who did not experience a stillbirth during the 
study period; therefore, the analysis population included 71,316 events (1,195 stillbirth events, including 1,150 sibling controls; 68,971 remaining 
controls), which corresponded to 51,181 families. The model shown in the last row of the table was selected as the final model.
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Table 4:

Estimated posterior quantities from fitting the final model.

Description of Explanatory Variable Mean (SD) 95% Credible Interval

Intercept β0 −4.5520 (0.0401) −4.6312 −4.4738

Point-Level Covariates

Maternal Age (Years) β1 0.0692 (0.0292) 0.0117 0.1265

Other Races/Ethnicities versus non-Hispanic White Indicator β2 0.6733 (0.0712) 0.5327 0.8122

Regional-Level (ZCTA) Covariates

Percent of Childbearing Women with Less than a Bachelor’s Degree β3 0.0973 (0.0392) 0.0201 0.1739

Median Income β4 0.0172 (0.0384) −0.0578 0.0929

Random Effects

Spatial Component
1

σw2
4.4863 (1.4223) 2.4824 7.9881

Temporal Component ϕ 0.8517 (0.1432) 0.4604 0.9938

1
σm2

13.9404 (6.0656) 6.8327 29.7302

Space-Time Residual Component
1

σc2
4.6876 (1.6492) 2.2746 8.6778

Maternal Contextual Effect
1

σγ2
5.3071 (1.7304) 2.8016 9.5144

Note: All continuous covariates were centered and standardized. Estimates of posterior quantities were obtained from the INLA package. The 
percent of child-bearing women with less than a Bachelor’s degree and median income were calculated for each ZCTA from the 2007–2011 
American Community Survey data. Other race/ethnicities included unknown race/ethnicity. Precisions are presented for the random effects. The 
corresponding mean of the estimated posterior distribution for σw, σm, σc, and σγ were 0.4721, 0.2678, 0.4619, and 0.4341, respectively.
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